About this Article
Written by: Ben Simpson
Written on: October 1st, 2000
Tags: computer science, electrical engineering, physics
Thumbnail by: Miraceti/Wikimedia Commons
About the Author
Ben was a USC Viterbi student at the time this article was written.
Also in this Issue
The Engineering Behind Shoe DesignWritten by: Unknown Unknown
The Engineering Behind the Microwave OvenWritten by: Jaime Clevenger
Stay Connected

Volume II Issue III > Another Atomic Age
We live in a nuclear age. We've harnessed the power of the atom to feed our thirst for energy, but new uses of the atom have the possibility to expand the annals of knowledge. Modern scientists are now turning to the power of the atom for its unbridled promise in the realm of computation.

Quantum Computers

The quantum computer has the potential to radically change the electronic age as we know it. A quantum computer is a theoretical construct for an advanced computing system that harnesses atomic properties for processing. Current computers will soon max out in speed, due to the limits of miniaturization; transistors and electrical wiring cannot be made slimmer than the width of an atom [1].
Quantum computing offers an alternative in the manufacturing of atom-wide circuits, resulting in much faster processing. Considering the massive calculations that quantum computers could perform, the possibilities seem endless. Programs could be made to simulate the quantum environment, something modern computers cannot even begin to model. These programs could simulate the experiments conducted in billion dollar facilities that are currently being constructed in order to help us better understand the universe.
In addition, medical programs could greatly benefit from quantum computing. Doctors could explore the human body and experiment on simulated environments, advancing medical research enormously. Another area of computing possibilities is the prime factorization of large numbers. Prime factorization is a mathematical algorithm that many organizations use for encryption. It is very hard to calculate in reverse; a modern computer might spend millions of years trying to perform the necessary calculations, rendering any hacking attempts laughable [1]. A quantum computer, however, might complete the required calculations in less than a year. On the other hand, quantum computers could be used to generate more powerful encryption techniques. Just as hacking becomes more powerful with greater resources, so does security. The only danger here is if one party has access to quantum computing and the other does not. When the technology for quantum computing is achieved, it is imperative that it be accessible to everyone.