USC
About this Article
Written by: Mark Weaver
Written on: July 21st, 2005
Tags: civil engineering, material science
Thumbnail by: Intents
About the Author
Mark was a senior civil engineering building science major at the University of Southern California in the fall of 2005. He loves hanging out with his brothers in AGO and enjoys traveling, playing sports, and reading in his free time.
Also in this Issue
Terraforming MarsWritten by: Denise Nemenz
The Evolution of GPSWritten by: Adam Goetsch
The Four Most Important Parts Of Your CarWritten by: Joseph Yeargan
The Violin: The Art Behind the SoundWritten by: Farisha Salman
Stay Connected

Volume VII Issue I > Tension Fabric: Waves of the Future
While architecture based on tension has been used since ancient times, almost every permanent structure in the world, until about 50 years ago, was based on compression loading. Beginning in the 1950's, there was a renewed interest in tension structures led by the German architect Frei Otto. As a result of research performed by Otto and several of his contemporaries, the ideas that govern tension fabric structures were developed and implemented. Tension fabric has unique physical properties due to its basic structure that makes it an incredibly versatile building material. Its lightweight, translucent and reflective properties allow for energy and material conservation. It is therefore considered by many to be a form of sustainable architecture, architecture that meets the needs of today without compromising the ability of future generations to meet their own needs.

Introduction

Sometimes the most complex questions have the simplest answers. Consider the shape created by the soap film around a soap dish as it is quickly set down. While the soap bubble is incredibly fragile and will break almost immediately due to the nature of the material, the actual shape created is an example of a natural form using a minimum amount of materials very efficiently. This soap bubble shape was the missing link in the development of tension fabric structures. Prior to the discovery that shapes taken by soap bubbles, crystals, and microscopic plants can be utilized as possible forms for tension fabric architecture, it was impossible to create permanent large scale tension fabric structures able to withstand wind, snow, and gravity loads. However, due to this important discovery, not only could tension fabric be used as an effective roofing material for large spans, but its lightweight nature, translucent and reflective properties, and environmental adaptability could also be taken advantage of in building construction.

History of Tension Fabric Structures

Sidebar
The idea behind tension fabric structures has been around for as long as man has created structures for shelter. As the name suggests, tension fabric structures utilize fabric in complete tension, or the act of pulling apart, as a primary building material. The earliest and most frequently used example of this type of structure was tents. Historically tents have differed in building materials and methods of construction, depending on the climate in which they were constructed, ranging from the black tents of the Bedouins, Berbers, Moors, and Kurds to the highly evolved American tipi of the Native Americans [1].
On the whole however, most buildings prior to the twentieth century were based on compression loading, or the act of pushing together. Some notable examples of this compression architecture are the ancient Egyptian pyramids and the iconic Eiffel Tower of Paris. There were exceptions to this rule, such as the Golden Gate Bridge of San Francisco and other suspension bridges.
In the 1950s, architects and engineers began to take a renewed interest in using tension as the primary method of transferring loads in structures. Two main figures responsible for advancement in this investigation of tensile structures were Frei Otto and Horst Berger of Germany. Otto was a pioneer in tensile architecture who discovered natural forms such as soap bubbles and crystals created shapes that used a minimum amount of materials very efficiently. He then went on to make the connection that these forms could be used as possible shapes of perfect tension and therefore could be utilized in tensile architecture. However, without these shapes being defined mathematically, little further analysis and testing could be done without creating painstaking models out of soap. Berger was instrumental here. He discovered the mathematical relationship describing this soap bubble form. Since this discovery, tension fabric structures have begun to appear on the architectural landscape [1]. Some current well known structures utilizing tension fabric include the largest cable supported roof in the world of the Millennium Dome in London, England [2], and the Haj Terminal in Jeddah, Saudi Arabia, designed in part by Berger and currently one of the largest tensile structures in the world [1].