About this Article
Written by: George Stratis
Written on: April 1st, 2002
Tags: mechanical engineering, sports & recreation
Thumbnail by: Kamalsell/Flickr
About the Author
In the spring of 2002, George Stratis was a junior majoring in Computer Science and minoring in Peace and Conflict Studies at USC.
Stay Connected

Volume IV Issue II > Formula One Race Cars: Blurring the Lines between Art and Science
In order for the Formula One industry to produce some of the fastest cars in the world, art, science, and engineering must find common ground. Fierce competition and numerous regulations necessitate new design approaches in order to gain the few milliseconds that can separate the winners from the losers. Designers, engineers and computer scientists utilize the latest computer aided design technology in an effort to create the perfect racing machine.


Every other Sunday, from March to September, more than 40,000,000 people partake in the excitement of the Formula One Grand Prix. Attracting worldwide attention to its host country, the race has taken place throughout Europe, Australia, Japan, Brazil, and the United States. Since its beginning in the twentieth century, Formula One racing has grown in popularity commensurate with most other international sporting events today (see Fig. 1).
Figu​re 1: Just after the starting line at the 2006 Malaysian Grand Prix.
From the expensive sports cars on the streets to the futuristic machines in the movies, fast cars enliven the imagination. Earnest fans around the world watch the Grand Prix religiously, even if the difference in time zones requires live viewing at 2am. While many follow the races and relish the excitement it engenders, far fewer understand the engineering behind these mammoth works of art. They are some of only a few machines weighing as much as 600kg while able to reach velocities of more than 200 miles per hour. The production of a Formula One racing car is a fine example of the subtle combination of art and engineering.
The design and construction of a Formula One car requires the collaboration of a diverse design team. Aesthetic designers, computer scientists and engineers must settle on common ground to develop highly interrelated machinery in a coherent and coordinated manner. It is not uncommon for Formula One cars to have multi-million dollar budgets. With such resources, limited time frames, and the knowledge that victory and failure rest a few milliseconds apart, these professionals work as a team to produce their finest work.


Each year the handful of teams that participate in the Formula One circuit design a car from scratch, able to perform in a continuously evolving and highly competitive environment. The manufacturers only receive three months of off-season time. Such time-limited operation requires excellent management and team work. Usually one manufacturer designs the car chassis while another is in charge of the engine. It may seem counterintuitive to design such critical components independently, but with proper coordination, models can fit perfectly the first time the car is assembled. It is crucial to "avoid any misunderstandings that often take place when experts of different domains...have to find a common language to transfer knowledge" [1]. However, the development cycle is initiated long before manufacture begins.