USC
About this Article
Written by: Vrunda Rathod
Written on: October 24th, 2004
Tags: art, computer science
Thumbnail by: Heil/Wikimedia Commons
About the Author
Vrunda Rathod was a student at the University of California who studied Biomedical Engineering in the fall of 2004. She enjoys frequenting museums to experience art on a first hand basis.
Also in this Issue
Biodiesel: A Realistic Alternative?Written by: Shelley Howard
Engineering Water: Finding Solutions to a Drying WellWritten by: Cindy Goh
Getting the BootWritten by: Adrian Lim
Medical MacGyversWritten by: Alexis Seegan
The Botox Lowdown: Science, Safety, and SuccessWritten by: BJ Gill
Stay Connected

Volume VI Issue II > Michelangelo's Motion Picture
With the recent boom in digital technology, science has opened the doors to historical secrets. For years, engineering has paved the path to knowledge. Now, it has come to the aid of aesthetes, uncovering the mysteries hidden for us by history's master artists. 3D scanning provides art historians with virtual models of sculptures whose accuracy parallels that of microscopic inspection. This allows art historians to focus on detailed analysis, which can help elucidate the methods of the masters. Also, virtual images can be used to create a worldwide archive of art, allowing historians to analyze artwork at their leisure, without leaving the comforts of home. Furthermore, a worldwide archive permits thousands of people to view pieces simultaneously. Pioneering projects in this field include Stanford's recent scanning project of Michelangelo's David and IBM's Florentine Pieta project. This article provides an overview of the processes used to scan these pieces, as well as the problems and innovative solutions that lead to some amazing results.

Meeting Michelangelo

Take a closer look at Michelangelo's David. Originally, the David was to stand atop a flying buttress at the Florence Cathedral, where viewers would have to gaze upward at the masterpiece. To account for this skewed perspective, Michelangelo extended David's right arm past mid-thigh, further than that of the normal male. At ground level, the arm seems abnormally long, but when viewed at the intended line of sight, the arm appears to be of normal length. Such details reveal Michelangelo's genius. Although prominent aspects of a sculpture are easily noticeable, more minute details are often indiscernible by the naked eye.
These minute details often make all the difference. In a world of countless duplicates, it has become important for the art historian to be able to distinguish the art of a master from a common forgery. In addition, the smallest details can often hide the secret to the method and meaning behind each great work of art. It is the quest for particulars that has turned many art historians to science.
And in response, engineers have created a tool that will allow art historians to scrutinize sculptures centimeter by centimeter: 3D scanning. This scanning allows art historians to build an interactive virtual image capable of demonstrating the full beauty of a work, while giving perspectives often unattainable in real life. In fact, 3D scanning is so precise, each chisel mark made centuries ago can be measured and mapped.