About this Article
Written by: Jordan Olliges
Written on: July 17th, 2009
Tags: aerospace engineering
Thumbnail by: NASA Orbital Debris Program Office
About the Author
In summer 2009, Jordan Olliges was a senior majoring in Aerospace Engineering at the University of Southern California. He plans to continue his education at USC with a Master’s Degree in Aerospace Design before pursuing a career in launch vehicle development.
Also in this Issue
Biomimetics: Engineering Spider SilkWritten by: Soyoung Kang
Engineering the Heart-Lung MachineWritten by: Julie Woodburn
The Power of Pond Scum: Algae BiofuelsWritten by: Melissa Owens
Stay Connected

Volume XI Issue I > The Impact of Orbital Debris
Over the past 50 years, man's growing presence in space has led to an increasing amount of debris orbiting Earth. With contemporary society’s heavy reliance on the technology orbiting the planet, the risk of collisions endangers the way man utilizes space. Existing concepts to remove orbital debris are not feasible and the increasing threat of fragmentation poses a substantial hazard to current and future manned and unmanned space missions. Though the United Nations has created guidelines to mitigate orbital debris generation, fragmentation events continue to occur and a stronger international focus on avoiding future satellite collisions is needed.


In a scene predicting a grim future for our world, Disney and Pixar's Wall-E hitches a ride on a rocket launching from the surface of the Earth. As the vehicle leaves the gravitational pull of the planet, it passes through a veritable wall of orbital debris and has to break through a mass of unused satellites and neglected spacecraft [1]. Though this particular vision is fictional, recent events within the international community have raised the level of concern that future hazards for manmade spacecraft might not be too far removed from the perils confronting Disney's animated robot. Earth’s orbits are currently not as crowded as those in Wall-E, but the growing amount of orbiting debris does pose new problems for future satellites and manned space missions. For current Space Shuttle missions, the largest threat to the operation is no longer launch or reentry, but the dangers of orbiting trash (see Fig. 1) [2]. The hazards of orbital debris that endanger the shuttle and other satellite missions have come into the limelight as a glaring challenge to man’s continued success in space. Although the United Nations has made guidelines to curb the dangers caused by the escalating cloud of debris, the problem requires more international attention to mitigate the threat of fragmentation plaguing the planet’s orbits.
NASA Orbital Debris Program Office
Figure 1: A NASA image of orbital debris in Low Earth Orbit. LEO debris can cause catastrophic harm to satellites and shuttles if a collision occurs.

Man-Made Debris in Space

Beginning with the launch of Sputnik on October 4, 1957, man's fascination with space has given rise to an escalating presence in Earth’s orbit [3]. From commercial communications satellites to the International Space Station [4], man-made objects populate the skies around our planet. Over the last 50 years, society has benefited from these orbital advancements and continues to become more and more reliant on the technology orbiting Earth. Contemporary culture revolves around access to internet, television, cell phones and GPS - all of which utilize satellites for data communication. With man's ever-increasing presence in space, however, comes an ever-increasing presence of space debris. Every satellite that is launched into orbit is accompanied by a plethora of used rocket motors and spent fuel tanks. Antiquated satellites explode from residual propellant pressure or old batteries, sending fragmented pieces of garbage tumbling into the same orbital regimes employed by operational spacecraft and manned space missions. With many countries fostering new space programs and numerous nations already launching satellites, the orbital debris issue will only get worse in the coming years.
The question now becomes: who gets to make the rules? Who becomes the garbage collector and who becomes the air traffic controller? The more populated orbits become, the more dangerous they are for other satellites, and as the Chinese showed in 2007, one country's neglect for the serenity of space can have significant impact on the rest of the world.