USC
About this Article
Written by: Bryan Price
Written on: December 7th, 2007
Tags: food & drink, chemical engineering, lifestyle
Thumbnail by: Inespm/Wikimedia Commons
About the Author
In the fall of 2007, Bryan Price was a senior majoring in Mechanical Engineering from New Canaan, CT. Complimenting his passion for engineering is his lifelong love of cooking that spiked his interest in the field of molecular gastronomy.
Also in this Issue
Engineering SnowWritten by: Ryan Green
Reflecting on the MirrorsWritten by: Richie Aquino
The Danger of Airport Runway Crashes Written by: Catherine Rae T. Ricafort
TurbochargersWritten by: Susan Miles
Stay Connected

Volume IX Issue III > From Chemistry Labs to the Kitchen: Molecular Gastronomy
In 1980, the science behind cuisine, formerly known as molecular gastronomy, was introduced into the culinary world. Cooking experts in some of the top restaurants from London to New York City have demonstrated how understanding the science behind simple foods — such as French fries and mayonnaise — can add new dimensions to taste by simply introducing new methods in preparation. New technology has advanced the diversity of molecular gastronomy, leading to the transfer of innovation from chemistry labs to the kitchen. While newly engineered kitchen tools are relatively expensive, the founding cooks of molecular gastronomy are hopeful about the future of science in everyday cooking.
"Centrifuge" doesn't stand out as a household name when it comes to kitchen appliances. But someday, they might be as useful as the common blender to cooks around the globe. Some of the finest chefs in the world are turning to equipment that previously was only found in a laboratory to create new dishes that have the potential to revolutionize our concept of cooking. They are being inspired by a new field of science known as molecular gastronomy, which is attempting to explain the science behind cooking. Sure, you might have boiled an egg before, but have you ever thought about why an egg gets hard when boiled? Or why you can fry an egg so that the white protein gets hard but the yolk stays runny? The new-age group of chef-scientists is working to figure that out, and in turn use that information to create new, innovative dishes that were previously thought to be impossible.

A Short History of Molecular Gastronomy

The field of molecular gastronomy is the brain child of scientist Herve This (pronounced "Thees"). Shortly after receiving his diploma in physical chemistry in 1980, This had some friends over for dinner. He had found a new recipe for a cheese soufflé that said to add the eggs two at a time, but being a scientist and seeing no point to this, he added all the eggs at once. An hour later, his soufflé turned out to be a disaster, and This began to wonder why it would make a difference to add the eggs two at a time — and thus molecular gastronomy was born [1].
This and his partner, Nicolas Kurti, first coined the term molecular gastronomy in 1988. Together, they developed the initial scientific purpose of this new field. Their goal was not to be chefs, because chefs were only concerned with the preparation of food. Rather, molecular gastronomy was to be the study of the physics and chemistry behind the preparation. They wanted to understand why mayonnaise becomes firm when you mix oil and eggs or why a soufflé swells when you cook it [2]. They believed that if they had a better understanding of why certain foods are cooked the way they are, and what happens to the foods as they are cooked, then they could unlock new worlds of innovation in the culinary world.
Twenty five years later, This is still pursuing his passion in his lab-turned-kitchen at the Collége de France in Paris [3]. Earlier this year he published his latest book, entitled Kitchen Mysteries, where he discusses the science behind the most basic components in many of our meals (eggs, milk, bread, etc.) and answers questions such as why vegetables change color when cooked [4].
While This and Kurti initially came up with the idea, there have been a few other chefs that have taken it to the commercial marketplace. Over the past ten or so years, chefs such as Wylie Dufresne, chef of the New York restaurant WD-50, and Heston Blumenthal, chef of the world famous Fat Duck restaurant near London, have worked to combine the theories of molecular gastronomy into their cooking. And they are doing it well — in both 2005 and 2006, Blumenthal was ranked among the top three chefs in the world by the British Restaurant magazine [2].
What are they doing to make themselves so successful? They are taking food to the next level; they are using science to make the perfect French fry, or using new equipment to cook a steak to a perfect medium rare every single time. They are also experimenting with new ways to serve classic dishes, like a BLT with mayonnaise balls and tomato molasses instead of the traditional sandwich.